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The objective of this paper is to determine theoretically the material damping of short 
fibre-reinforced polymer matrix composites. The major damping mechanism in such 
composites is the viscoelastic behaviour of the polymer matrix. The analysis was carried 
out by developing a finite-element program which is capable of evaluating the stress and 
strain distribution of short fibre composites under axial loading (see Fig. la). Using the 
concept of balance of force we can express the modulus Ex along the loading direction 
as a function of the mechanical properties of the fibre and matrix materials, fibre aspect 
ratio,//d, loading angle, 0, and fibre volume fraction, Vf. Then we apply the elastic- 
viscoelastic correspondence principle to replace all the mechanical properties of the 
composite, fibre and matrix materials such as Ex, El, Era, Grn, by the corresponding 
complex moduli such as Ex + iEx', and E~ + iE~'. After separation of the real and imagin- 
ary parts, we can express E x and E~' as functions of the fibre aspect ratio, I/d, loading 
angle, 0, stiffness ratio, Ef/Em, fibre volume fraction, Vf, and damping properties of the 
fibre and matrix materials such as r/f and r/m �9 Numerical results of the composite storage 
modulus, Ex, loss modulus, Ex', and loss factor (damping), r/c, are plotted as functions 
of parameters such as I/d, 0, Vf, and are discussed in terms of variations of I/d, 0, and 
Ef/Em, in detail. It is observed that for a given composite, there exist optimum values 
of l id and 0 at which E x' and rtc are maximized. The results of this paper can be used 
to optimize the performance of composite structures. 

Nomenclature E= 
A e , A f ,  A m cross-sectional area of composite, 

fibre and matrix, respectively Ef 
d fibre diameter E m 
E L longitudinal modulus of composite Gm 

(along the fibre direction) (see GLT 
Fig. la) 

E T transverse modulus of composite l 
(see Fig. 1 a) ~ m 

modulus of composite along the 
x-direction (see Fig. lb) 
tensile modulus of fibre 
tensile modulus of matrix 
shear modulus of matrix 
in-plane shear modulus of com- 
posite (see Fig. la) 
fibre length 
tip to tip distance between fibres 
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one-half of centre-to-centre fibre 
spacing 
fibre volume fraction 
distance along fibre from end of 
fibre 
defined in Equation 22 
defined in Equation 3 
defined in Equation 19 
extensional (longitudinal strain) of 
composite 
extensional (longitudinal strain) of 
fibre and matrix, respectively 
extensional loss factor of composite, 
fibre and matrix respectively 
shear loss factor of matrix 
angle between fibre and the x-direc- 
tion 
average longitudinal stress in com- 
posite, fibre and matrix, respect- 
ively 
longitudinal stress in fibre 
shear stress at fibre-matrix interface 
defined in Equation 23 

1. I n t roduc t ion  
It is desirable to design a structure with high stiff- 
ness, high strength, low weight, low coefficient of 
thermal expansion, high thermal conductivity and 
also high damping (or loss modulus). Good damping 
is extremely important for structures when they are 
used under dynamic loading environments such 
as structures used in aerospace applications. The 
objective of this research is to first derive analyti- 
cally the loss modulus, E~, and storage modulus 
E"  as functions of fibre matrix stiffness ratio, 
Ef/Em, fibre aspect ratio, l/d, fibre volume frac- 
tion, Vf, loading angle, 0 (the angle between the 
fibre direction and the direction of the applied 
axial force), and the damping properties of the 
fibre and matrix materials. We then optimize 

I t  tP ! E', E x and ~7c = E~/E~ and obtain optimum 
values of l/d and 0 at which peak values E~ and 
r~ e occur for a given E f / E  m . 

One of the first papers to report on optimiz- 
ation of damping in structural materials was 
that of Plunkett and Lee [1]. The damping of 
basic composite structures was improved by 
introducing thin constrained viscoelastic layers 
on the top and bottom of the structures. These 
viscoelastic layers were stiffened by constraining 
layers with stiffness equivalent to that of the 

base structure. Plunkett and Lee presented a 
method [1 ] for increasing this damping by cutting 
the constraining layer into appropriate lengths. 
Thus, they optimized the damping property of 
the base structure by using the optimum length 
of the constraining layer. The analysis was based 
upon effective complex moduli of an equivalent 
homogeneous medium. 

Experimental investigations have indicated 
[2, 3] that damping of discontinuous or short 
fibre-reinforced polymer matrix composites is 
in general greater than that of continuous fibre- 
reinforced composites. Gibson et al. [4] found 
the theoretical optimum damping property of 
discontinuous aligned short fibre composites for 
the case when the axial load is parallel to the fibre 
direction. The optimum fibre aspect ratio, l/d, was 
derived for a given fibre matrix stiffness ratio, 
Ef/Em. The analysis was based upon Cox's [5] 
shear-lag model for determination of the stress 
distribution along the short fibre. The concept 
of balance of force and the elastic-viscoelastic 
correspondence principle were then applied to 
derive the storage modulus, E~,  and the loss 

Pf modulus, EL, as functions of such parameters as 
Ef/Em, Vf and lid. In another publication by 
Sun et al. [6], damping of short aligned fibre- 
reinforced polymer matrix composites was opti- 
mized for the case when the fibre direction makes 
an angle 0 with the direction of the applied load. 
The loss modulus, E~, was optimized in terms 
of lid as well as the loading angle 0. 

This paper is an extension of the research work 
published in [4, 6]. In Cox's shear-lag model, 
one important assumption was equal extensional 
strain in the fibre and matrix materials. Based 
upon the preliminary investigation by Sun and Wu 
[7], the assumption of equal extensional strain 
cannot be justified for the cases (a) high stiffness 
ratio Ef/Em, and (b) low volume fraction, V~. In 
this investigation we have developed a finite- 
element program which is capable of determining 
the stress and strain distribution along a 
short fibre. We use the finite-element program 
to modify the Cox's shear-lag model. Then the 
concept of balance of force and the elastic- 
viscoelastic correspondence principle are applied 
to derive E"  and E" as functions of such 
parameters as E~/Em, l/d, 0 and Vf. Optimum 
values of lid and 0 to optimize r~ e = E"/E'x are 
obtained. A comparison of the numerical results 
obtained from Cox's shear-lag model with those 
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Figure 1 Representative volume element. (a) Aligned case. (b) Off-axis case. 
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obtained from the finite-element model is also 
made. 

2. Analysis 
The analysis has been carried out in [6] in detail. 
For the sake of continuity, however, the essential 
part of the development will be presented in this 
section. 

For a typical representative volume element as 
shown in Fig. lb the expression of the modulus, 
Ex, along the loading direction x is given by [8]. 

1 c~ + sin40 {--= -sin v cos20 _ _ _  + 1 2PLT] �9 2~ 
Ex EL ET \(JLT / 

(1) 

Equation 1 was originally derived for continuous 
fibre reinforced composites. EL, ET, GLT and PLT 
can be expressed in terms of El, Era, Gf, Gin, etc, 
and fibre volume fraction, V~, either from the 
rules-of-mixtures or the Halpin-Tsai equation [8]. 
For short aligned fibre composites, however, 
one cannot use the rule-of-mixtures or Halpin-Tsai 
equation to represent E L . For short aligned fibre 
composites, the longitudinal modulus, EL, must 
also depend on the fibre aspect ratio, l/d. Based 
upon Cox's shear-lag model, E L is given by [4, 5] 

tanh/3//2] 
E L = Ef 1 ~ ] V ~ + E m ( 1 - - V f ) ( 2 )  

where 

(ill) 2 = 8 Cm qld)  2 (3) 
Eg ln(2R/d)  2 

In Equation 3 the ratio Rid is related to the fibre 
volume fraction, Vf, for a specific packing array. 
For example, for a square packing array 

16V~ (4) 

and for a hexagonal packing array 

- 8(3 Vf)in (5) 

Based upon a preliminary investigation [4], packing 
geometry has an insignificant effect on the magni- 
tude of damping or on the optimum aspect ratio, 
lid. Therefore we use a square packing array 
in our subsequent analysis. From Equations 3 
and 4 we find that 

~T 
- - / >  1 (6) 
4vf 

from which we have 

Vf~< s = 0.785 (7) 
4 

This implies that for square array packing, V~ can- 
not exceed 78.5%. Otherwise, from Equation 3 
(/3/) z becomes negative, which is physically imposs- 
ible. 
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Substitution of Equation 4 into Equation 3 
yields 

G m (l/d) 2 
(/3l) 2 = 16 - -  (8) 

E~ ln(n/4 Ve) 

Equation 8 shows that the parameter /3l is essen- 
tially a function of fibre matrix stiffness ratio, 
El~Era, fibre aspect ratio, l/d, and fibre volume 
fraction, Ve. 

The transverse modulus, ET, and the in-plane 
shear modulus, ET and GLT, are almost indepen- 
dent of fibre aspect ratio, IM. Therefore, we can 
use the same formulas as in the case of continu- 
ous fibre composites. In this investigation we 
use Halpin-Tsai equations, i.e. 

E T = Em(i + 2Ti1Vf)(1 --TI1Vf) (9) 

GLT = Gin(1 + n=VOl(1 --n=V,) (lO) 

where 

,7, = [ ( & / e r a ) -  1 ] / [ (e l / era)+  2] (11) 

TI2 = [ ( a f / a m ) - -  1]/[(G~IGm)+ 1] (12) 

For the major Poissons ratio, Vi, T, which is not 
sensitive to fibre length, we use the rule-of-mixtures, 
i.e. 

VgW = Vfvf + vm(l -- Vf) (13) 

In order to determine damping of the composite 
we assume that both fibre and matrix are visco- 
elastic materials. This permits us to use the elastic- 
viscoelastic correspondence principle to redefine 
the basic material properties as 

E x = E* = E' x + i E ;  
# 

E r = E~ = Ef +iE~' 
# . t l  

E m = E *  = E m + iE m 

am a*m = +,an,  
(14) 

where prime quantities represent the storage 
moduli and the double prime quantities represent 
the loss moduli. Damping (or loss factor) is defined 
as the ratio between loss modulus to the storage 
modulus, i.e. 

tt F 
Tie = Ex/Ex 

(15) 
rt ! 

T i m  = Em/E m 

= G" I~ '  
T I G m  m t ~ m  
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After using Equation 14, Equations 2, and 8 to 
10 can be written as 

tanh/3*l/2 I -  
E~ = (E~+iE~') 1 ~ : V f  (16) 

+ (~; .  + iE~,)(1 - VO 

1 + 2TI~Vf 
E~ = (E~n + iEm) 1 --TI~'Vf (17) 

G~T = (Gin + iGm) 1 + TI~Vf (18) 
1 - -  T i * V f  

where 

Cm " + iG~(l/d)2 (19) (/3"l) 2 = 16E~+ 
iE~'ln(rc/4 vO 

[(E~ + iE~')I(E m + iEm) ] -- 1 
77* = [(E~ + iE~')/(E~ + iE")] -+-2 (20) 

[(G~ + iG~')/(G m + iGm) ] -- 1 (21) 
TI~' = [(G~ + iG;')/(Gm + iGm)] + 1 

Substituting E~, E~ and G~T from Equations 
16 to 18 for El,, ET and GI, T, respectively, and 
E* for E x into'Equation 1 we obtain 

1 cos40 sin40 

E" + iE x E* L E~ 

1 2VLTI 
+ G~T E~ ] sin20 c~ (22) 

Equation 22 can be used to determine E '  x and 
Ex for the composites by separating the real and 
imaginary parts. Since E~ is an exponential func- 
tion of 13"I as shown in Equation 16 which depends 
upon the complex stiffness ratio of Gm/Ef as 
indicated in Equation 19, a closed-form expression 
for the real and imaginary part is very difficult 
to obtain. The difficulty can be overcome by 
expanding the exponential term tanh/3*l into 
power series of the stiffness ratios and then 
neglecting higher order terms of the loss factors 
such as TI~ and Tif TIG etc. The analytical result 
is too lengthy to be presented here but it is avail- 
able in the authors' file. The final result can only 
be presented in the general form as 

E" = ~,(E~,IE~,I/d,O, V,,nf, nm,nGm) 

E~ = ~2(E~,,/E~,l/d, O, Vf, nf,  Tim, nGm ) 

= = ~3(Emls O, TI~ E~/E~ ' " l/d, V~, % 

Tim, Tiara) (23) 



By assuming all the parameters except one are 
r r 

constants, one can optimize Ex, E x and r/e with 
respect to that parameter. For example we can 
optimize ~c with respect to fibre aspect ratio, I/d, 
from the equation 

3(l/d) = 0 (24) 

This completes the analysis by using Cox's shear- 
lag model. Numerical results obtained from this 
approach are referred to as Cox's shear-lag model 
results. 

As pointed out in Section 1, one of the assump- 
tions "equal extensional strain in the fibre and 
matrix materials" used in the Cox's analysis [5] 
cannot be justified. In order to remove this assump- 
tion we have developed a finite-element program 
[7] which is capable of evaluating the stress and 
strain distribution in the fibre and matrix materials 
of aligned short fibre composites (Fig. la) under 
axial loading. This finite-element program can 
be used to modify Equation 2 for E L. 

From the equilibrium equation the average 
stress in the composite is given by 

~L 
= ~  f m 

or 

0-L = ofV~ + Om(1 -- VO (26) 

where the average stresses -fir and B m in the fibre 
and matrix are, respectively, given by 

1 2 ~z/2 
~ = zafjq-fAfafdAf = )-J0 afdx (27) 

where 

1 
~m = ~m f AmomdAm 

Vf = Af/Ac and 1 -- Vf = Am/Ac (28) 

From Cox's analysis [5] we can obtain 

[ x, l 
of = efE~ 1 co--~i /2  (29) 

Substituting Equation 28 into the first equation of 
Equation 27 we obtain 

of = clef[1 tanh~/I/2] (30) 

The average stresses in the matrix, O--m, and in the 
composite,-ffL, can be expressed in terms of e m 
and er respectively 

Om = emEm (31) 

O" L = eLE  L 

Substituting Equations 29 and 30 into the equilib- 
rium Equation 25 we obtain 

Eme L = E~ef(1 tanh/31/21V~ + Emem(1 -- Vf) 

(32) 

Equation 32 is similar to Equation2 with the 
exception that each term is multiplied by the 
corresponding strain term. With the assumption 
of equal extensional strain Equation 32 is reduced 
to Equation 2. 

In order to improve analytical results, Equation 
32 is still valid since it is derived from equilibrium 
equation and the one dimensional Hooke's Law. 
The finite-element program of Sun and Wu [7] 
which is capable of calculating the strain distri- 
bution at every point, can now be used. The 
detail of development of the program can be 
found in [7]. Based upon the finite-element 
program we can determine ef at a finite number 
of points at the fibre and em in finite number of 
points in the matrix under a given extensional 
strain, e L . Now We can determine the average 
extensional strains in the fibre and in the matrix, 
respectively, and express in terms of the exten- 
sional strain, eL, in the following expression 

ef ----= ~e L 

em = 7eL (33) 

where a and 3' are determined numerically from 
the finite-element program in [7]. Since, in general, 
e m is greater than el, T should be greater than 
unity and a should be less than unity. Substituting 
Equation 33 into Equation 32 one obtains 

tanh~l/21. 
E L = Ef 1 ~ IglOO+ Era(1 --  Vf)')' 

(34) 

Equation 33 and the corresponding equation 

E* ( tanh/3l/2~_~ ] ,  L = (e; + w;') . l  ]vf  

+ (Era + iEm)(1 -- Vf)7 (35) 

should be used to replace Equation 2 and Equation 
16, respectively. All the other equations will 
remain unchanged. The loss modulus E" and the 
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storage modulus E' x can be evaluated and opti- 
mized by exactly the same procedures. Numerical 
results obtained this way are referred to as the 
finite-element model results. 

3.  N u m e r i c a l  resu l ts  a n d  d iscuss ion  
r~ c is defined as the ratio of  E"/E' x and since both 
E"  and E' x are functions of  El~Era, l/d, O, V~ and 

x 

~ etc, the variations of  ~ and E x may not follow 
the same pattern. Therefore, in the numerical 
presentations we have three dependent variables 
the non-dimensional ratio E'x/E~, the non-dimen- 
sional ratio Ex/E ~,  and the non-dimensional ratio 
~/~Tm. In general, we have seven independent 
variables, namely Ee/Em, l/d, 0, Vf, ~Te, f~m and 
~Gm. A cross-plot including all the possible 
variations of the seven variables is almost imposs- 
ible and unnecessary. In the following we first 
limit our presentation to epoxy matrix material 
and four fibre materials; glass, Kevlar, graphite 
and boron. Also for most composite materials 
used in aerospace industry the fibre volume 
fraction varies in a narrow range, from 50% to 
60%, so we use Vf = 50% in the numerical cal- 
culation. For an epoxy matrix material we use 
~m =0 .015  and r/Gm = 0 . 0 1 8  [4]. From the 
above discussion, the active independent variables 
are now narrowed down fo four; l/d, O, ~7~ and 
four values Ef/E m. 

Fig. 2 presents the non-dimensional loss factor 
ratio ~7~/rlm of  glass-epoxy composites as a func- 
tion of  0 using l/d as a parameter. It is interesting 
to observe that r/e becomes maximum either 
when 0 = 0  ~ or when 0 = 9 0  ~ For smaller lM 
(say l/d < 5) maximum r~ e occurs at 0 = 0 ~ and 
for large lid the maximum r/e occurs at 0 = 90 ~ 
This result is in contrast with the relation between 

Figure 2 Plot of  He as a funct ion 
of  0 using lid as a parameter for 
g lass-epoxy composite.  

I I I 
80 

E~ and 0 in which the peak values of  E"  occur 
at some angle of  0 other than 0 ~ and 90 ~ for 
small lid [6]. It is also observed that the differ- 
ence in prediction between finite-element model 
and Cox's shear-lag model becomes significant for 
small 0 and small lid. The above observations are 
also valid for bo ron-epoxy ,  graphite-epoxy,  and 
Kevlar-epoxy composites. 

It is well-known [9] that graphite fibres them- 
selves are orthotropic (i.e. for graphite fibres 
E L 4: E w and the isotropic relation E = 2 (1 + v)G 
cannot be satisfied.) In order to take into account 
the effect of  orthotropic fibres, we use the method 
recommended by Whitney [10]. We denote Efx as 
the modulus of  graphite along the fibre direction 
and El2 as the modulus of graphite transverse 
to the fibre direction. In Equations 34 and 16 
for E* ' " ' " I~ we use E~I and E~I for Ef and E l ,  respect- 

ively, and in Equations 17 and 20 for E~ we 
simply use E~2 and E ~  for E~ and E~', respect- 
ively. Numerical results for graphite-epoxy com- 
posites are presented in Figs. 3 and 4. 

In Fig. 3 we plot ~c/r/m as a function of  0 
for graphi te-epoxy and Kevlar-epoxy com- 
posites. We note that r/e/r/m increases as Ef/E m 
increases. This result indicates the advantage of  
using higher modulus fibres. For graphi te-epoxy 
composites, we observe that the inherent ortho- 
tropic property of  carbon fibres makes a signifi- 
cant difference in predicting ~e for the case when 
0/> 10 ~ This difference increases as 0 increases. 

In Fig. 4 we plot T/e/T/m for graphi te-epoxy 
and Kevlar-epoxy composites as a function of  
1M. For the graphi te-epoxy composite, we also 
examine the effect of  orthotropic fibre on r/e. 

The difference is important only in the region 
of  small lid. We also examine the difference 
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between finite-element and Cox's shear-lag models. 
Again, significant difference is found only in 
the region of small l/d. 

Fig. 5 shows "qe/r/m for g lass-epoxy and 

b o r o n - e p o x y  composites as a function of  I/d 
for different values of  O. With the exception of  
small lid (say l /d< 5), ~e/r/m increases as 0 
increases. As 0 ~> 60 ~ T/e/~ m is almost indepen- 
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Figure 5 Comparison between finite 
element model and Cox's shear-lag 
model  - I. 
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dent of lid. The difference between the finite- 
element model and Cox's shear-tag model becomes 
important again in the region of small 0 and small 
lid. In Figs. 6 to 8, we plot the non-dimensional 

I tf  Ex, Ex and tic in the same diagram using both 
finite-element and Cox's shear-lag models. Fig. 6a 

tl shows E ' ,  E x and 17 c as a function of 0 for large 
lid (lid = 100). We first observe that variations 
of  E" and rlc do not follow the same pattern. 
As expected the minimum value of E" occurs at 
0 = 0 ~ and the maximum ~e occur at 0 = 90 ~ . 
The peak value of E:~ however, occurs at 0 near 
20 ~ . The predictions of the two models differ 
significantly for E~ in the region of small 0 (say 
0 ~< 0 15~ Fig. 6b shows a similar plot for small 

lid ( l /d= 10). For small l/d, the difference in 
! It 

prediction of Ex, E x and ~/c by the two models 
becomes larger in the small 0 region than the 
corresponding difference for large IM. 

Figs. 7 and 8 show plots of E~, E" and r~ c 
as a function of 0 for boron-epoxy composites 
with two different fibre aspect ratios (I/d = 10 in 
Fig. 7 and I/d = 100 in Fig. 8). All the obser- 
vations in Fig. 6 for glass-epoxy composites are 
valid for boron-epoxy composites. For b o r o n -  
epoxy composites (with Ef/E m = 120) however, 
the difference between the two models in pre- 
diction of E ' ,  E"  and ~c is greater than the 
corresponding prediction for glass-epoxy compo- 
site (with Ef/E m = 21). 

2 5 8 2  
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4. Concluding remarks and 
recommendat ions  

Based upon the results of this paper and [6], we 
can draw the following conclusions and rec- 
ommendations regarding optimization of composite 
structures: 

(1) The storage modulus E'~: (a) for a given 
lid, E' x is maximum at 0 = 0 and then decreases 
as 0 increases; (b) for a given O, E'x increases 
asymptotically as lid goes to infinity; ( c ) E  x 
increases as E~/E m and/or I~ increase. 

(2) the loss factor % = E"/E'x: (a) for very 
small lid (say lid < 5, i.e. in whisker or micro- 
fibre range), the maximum rte occurs for small 
angles, 0; (b) for large lid, the maximum r/e 

occurs at large values of 0; (c) r/e increases as 
E~/Em increases; (d) rte becomes independent of 
lid for large angle of 0 (say 0 > 60 ~ and/or large 
lid (say lid >i 100). 

(3) The loss modulus Ex: in general the vari- 
P ation of E~ is more complex than ~ and E x. The 

following observations have been made. (a) For 
a given i~)/Em, there exists an optimum fibre 
aspect ratio, lid, at which E~ becomes maximum. 
(b) Both the peak values of/~2 and the optimum 
fibre aspect ratio lid increase significantly when 
high modulus fibres Erie m are used. Consequemly 
boron, graphite and Kevlar fibres have distinct 
advantages. (c) For a given Erie m there exists 
an optimum angle 0 at which gx' becomes 
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Figure 7 Compar ison be tween finite 
element model  and Cox 's  shear-lag 
model  - III. 

maximum. (d) This optimum angle, 0, decreases as 
E~/E m increases. (e) The peak value of E x 
diminishes as lid becomes large (say lid >1 100). 
(f) The influence of 0 and I/d on E~ diminishes 
when 0 is greater than 60 ~ . When 0 = 90 ~ , E~ 
reaches the same value for all values of lid. (g) The 
influence of fibre damping, r/~, on the optimum 
fibre aspect ratio, l/d, and the optimum angle 
0 is significant. For relatively large values of r/f 
(say r/e/> 0.2 r/m) the optimum fibre aspect ratio, 
l/d, is in the continuous fibre range (say lid ~ 100), 
and the optimum angle 0 is relatively large. For 
small values of r/f (say 0 ~< r/f < 0.2 rim) the 
optimum fibre aspect ratio, l/d, is small (say 
lid < 50), and the optimum angle 0 is also small 
(say 0 <~ 0 ~< 20~ (r/m is the damping of matrix 
material.) 

(4) Comparison between the Cox's shear-lag 
model and finite-element model. The difference 
between the Cox's shear-lag model and finite- 

t t t  
element model in predicting Ex, E= and r/c is 
significant under any one or the combination of 
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the following four conditions. (a) Small loading 
angle 0 (say 0 ~< 30~ (b) Small fibre aspect ratio 
lid (say l/d <~ 50). (c) Small fibre volume fraction 
V~ (say Vf ~< 30%). (d) Large E~/Era. 

The most ideal situation for designers designing 
a structure is to optimize E x and E x (or r/e) at 
the same time. Unfortunately, based upon the 
analytical research shown here we cannot optimize 
both E x and E x simultaneously. The situation 
between E" and r/e is, however, slightly different. 
The analytical results show that for small loading 
angles 0 (say 0 <~ 30~ r/e becomes maximum in 
the whisker or microfibre composites range (i.e. 
very small l/d, say l/d <~ 5). The stiffness E x for 
microfibre and whisker composites is also rela- 
tively high. Therefore, in order to achieve high 
stiffness E~ and high damping 7/c, microfibre and 
whisker composites seem to be the ideal candi- 
dates. 

The second possible means of achieving high 
stiffness and high damping of a composite is to 
choose fibres with relatively large damping. 
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Kevlar fibres are known to have such a property. 
Therefore, in order to achieve high stiffness and 
high damping, Kevlar, microfibre, and whisker 
composites are recommended. In general, if we 
use other fibres such as boron and graphite, a 
trade-off must be made in order to optimize 
structural performance. 
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